Intelligent Arc Handling

超高分辨率成像

释放超高分辨率 CT 和 光子计数 CT的全部潜力


当立(Dunlee)开始面向高分辨率 CT 成像,提供超小焦点技术

 

当今,最新的临床需求对图像质量和工作流程均提出了极高的空间分辨率要求。随着探测器分辨率技术不断突破极限,技术的关注点已转向通过 X 射线源提高空间分辨率。当立稳定的超小焦点技术经过精心设计,在图像质量优化、扫描效率和散热管理之间实现平衡,可帮助您充分释放超高分辨率 CT (UHR-CT) 和光子计数 CT (PCCT) 系统的性能。

 

目前,当立(Dunlee) Xpert 产品组合可提供多种焦点方案,能够帮助OEM 厂商及系统设计商更灵活地按照需求实现不同的CT应用,如为高通量成像(120 kW 功率),提供大焦点1.1 x 1.2 mm;再例如为超高清成像设计成像,提供最小尺寸焦点0.4 x 0.5 mm,旨在满足不断发展的技术需求与临床需求。

Advanced Anti-Scatter Technology

新型高分辨率 CT 系统的成像矩阵尺寸较小,需要更小的像素

高分辨率 CT 成像的兴起

 

CT 成像正在快速发展,空间分辨率和图像细节变得比以往任何时候都更加重要。两大核心技术正在引领这一趋势:

超高分辨率CT (UHR-CT)

 

通过采用更小像素尺寸的传统能量积分探测器 (EID)以实现更高的分辨率。

光子计数 CT (PCCT)

 

结合光子计数探测器,既能通过更小的像素尺寸实现更高分辨率,又能提供光谱成像能力。

 

这些先进的技术需要同样先进的 X 射线源。更小的探测器像素不仅要求焦点更小,而且还要求焦点具有热稳定性和机械稳定性,而这些正是当立(Dunlee)技术的核心优势。

高分辨率成像的临床应用

 

目前,临床对诊断清晰度的需求正日益增长,而高分辨率 CT 的应用则依赖于细微结构的精确可视化。

Cardiovascular imaging

心血管科:用于冠状动脉和软斑块的可视化

Characterization of cancer

肿瘤科:用于微小病灶检测与肿瘤性质评估

Visualization of fine structures in the brain

神经科:用于检测脑部轻微出血、轻微脑梗死以及评估细微神经结构

Lung visualization

呼吸科:肺部细节成像和检测间质的病变

Diagnosis of complex bone pathologies

骨科:用于复杂骨病变的可视化、微骨折检测以及植入物放置情况评估。

当立(Dunlee)在实现 UHR 和 PCCT 成像方面发挥的作用

 

X 射线管的性能对于充分释放高分辨率探测器的功能至关重要。当立(Dunlee)的产品专家开发出了高度稳定的超小焦点,并很好地平衡了其在日常临床使用中的功率和热性能问题。

空间分辨率的关键物理驱动因素包括:

 

  • 探测器像素大小:更小的像素可捕捉到更细微的细节。
  • X 射线管焦点尺寸:更小的焦点可通过减少模糊来提升清晰度。

 

一方面,更小的焦点会增加阳极的功率密度,因此必须有优秀的热管理避免系统停机;另一方面, 面对心脏扫描等需要高机架旋转速度的复杂应用,焦点尺寸无论大小,其机械稳定性都必须得到有效保障 。当立(Dunlee)提供的超小焦点解决方案具有高稳定性的优势。

三种新增焦点尺寸,充分释放高分辨率探测器的潜力

 

当立(Dunlee)提供不同的焦点方案,可覆盖整个CT应用范围:

Focal Spot Nominal Dimensions

防散射滤线栅技术,支持图像精度

 

先进的 CT 系统需要同样先进的防散射解决方案。当立(Dunlee)提供新一代防散射滤线栅,针对高分辨率成像进行了优化:

 

  • 纯钨材质,实现优异的散射吸收性能
  • 特征尺寸小至 70 µm,精度为 15 µm
  • 3D 打印设计,支持新兴的 UHR 和 PCCT 探测器布局

 

这些滤线栅可保持图像的清晰度和对比度,尤其在需要高精度的系统中表现突出。如需了解更多信息,请访问 www.dunlee.com/a-w/3d-metal-printing/our-offer/anti-scatter-grids-for-ct.html.

2D anti-scatter grid

我们还为您设计下一代临床应用系统提供支持。

当立(Dunlee)解决方案:Xpert 产品组合

当立(Dunlee)不同的Xpert产品组合配备不同的液态金属轴承球管,提供多种超小焦点方案,从而实现高分辨率成像:

CT6000

CT6500

CT8000

当立 CoolGlide™ LMB 球管

焦点选项
[in mm]

大: 1.1 x 1.2
中: 0.6 x 0.7
小: 0.4 x 0.7
XS: 0.5 x 0.6
XXS: 0.4 x 0.6
XXXS: 0.4 x 0.5

大: 1.1 x 1.2
中: 0.6 x 0.7
小: 0.4 x 0.7
XS: 0.5 x 0.6
XXS: 0.4 x 0.6
XXXS: 0.4 x 0.5

大: 1.1 x 1.2
中: 0.6 x 0.8
小: 0.4 x 0.8
XS: 0.5 x 0.6
XXS: 0.4 x 0.6
XXXS: 0.4 x 0.5

您是否想了解更多有关当立(Dunlee)如何支持高分辨率 CT 系统设计的信息?

从选择合适的焦点配置到集成至您的成像系统,我们的专家随时为您提供支持!请通过 marketing@dunlee.com 与我们联系,让我们共同打造高分辨率 CT 的未来。

来源及备注

 

  1. Gorham, S. et al. Impact of focal spot size on radiologic image quality: A visual grading analysis. Radiography. 2010. 16: 304-313.
  2. Hsieh, S. S. et al. Photon Counting CT: Clinical Applications and Future Developments. IEEE Transactions on Radiation and Plasma Medical Sciences. 2021. 5(4): 441-452. doi:10.1109/trpms.2020.3020212
  3. Xiong, Q. et al. Diagnostic performance of coronary computed tomography angiography stenosis score for coronary stenosis. BMC Medical Imaging. 2024. 24(39).
  4. Hagar, MT et al. Photon-Counting Detector CT: Advances and Clinical Applications in Cardiovascular Imaging. Rofo. 2024. doi: 10.1055/a-2452-0288.
  5. Perera Molligoda Arachchige, A. S. et al. Role of photon-counting computed tomography in pediatric cardiovascular imaging. World Journal of Clinical Pediatrics. 2025. 14(1): 1-8.
  6. Sotoudeh-Paima, S. et al. Photon-counting CT versus conventional CT for COPD quantifications: intra-scanner optimization and inter-scanner assessments using virtual imaging trials. Proc SPIE Int Soc Opt Eng. 2022. doi:10.1117/12.2613003
  7. Kotwani, K. et al. High-Resolution Computed Tomography in the Diagnosis of Temporal Bone Pathologies: A Cross-sectional Study. International Journal of Science and Research. 2024. 13(10): 431-33.
  8. Hsieh, S. S. Overcoming the thermal limits of photon counting CT resolution using focal spot multiplexing: A feasibility study.
  9. Hsieh, S. S. Focal spot rotation for improving CT resolution homogeneity. Proc. SPIE 10573, Medical Imaging. 2018. Physics of Medical Imaging. https://doi.org/10.1117/12.2292472
  10. Shan, Jing, et al. Anode Thermal Analysis of High Power Microfocus CNT X-Ray Tubes for in Vivo Small Animal Imaging. Feb. 2012, pp. 226–34, doi:10.1117/12.911521.
  11. Aurumskjöld, ML et al. A new era of high-resolution CT diagnostics of the lung: improved image quality, detailed morphology, and reduced radiation dose with high-resolution photon-counting CT of the lungs compared to high-resolution energy-integrated CT. Acta Radiol. 2024. 65(10):1211-1221. doi: 10.1177/02841851241269918
  12. Sun, Y. et al. Clinical ultra-high resolution CT scans enabled by using a generative adversarial network. Med Phys. 2023. 50(6):3612-3622. doi: 10.1002/mp.16172.
  13. Sharma, A. et al. A Review of Photon-Counting Computed Tomography (PCCT) in the Diagnosis of Cardiovascular Diseases. Cureus. 2024. 16(11). doi:10.7759/cureus.73119
  14. Milán Vecsey-Nagy et al.Coronary Plaque Quantification with Ultrahigh-Spatial-Resolution Photon-counting Detector CT: Intraindividual Comparison with Energy-integrating Detector CT. Radiology. 2025. 314(3).
  15. Bartlett, DJ et al. High-resolution chest computed tomography imaging of the lungs: impact of 1024 matrix reconstruction and photon-counting detector computed tomography. Investigative Radiology. 2019. 54(3): 129–137
  16. Stayman, JW et al. Multiple focal spots for high resolution CT. Proc. SPIE 12463. Medical Imaging 2023: Physics of Medical Imaging, 124630U(7 April 2023); https://doi.org/10.1117/12.2654455
  17. Henkelman RM. Increased CT tube life. J Comput Assist Tomogr. 1981 Feb;5(1):142-3. doi: 10.1097/00004728-198102000-00028. PMID: 7240489.
  18. Heiner Daerr, D001951504
  19. Zhong, L. F. et al. Measuring Size and Stability of Focal Spot for Linear Accelerator in Industrial CT by Slit Translation Scanning Method. IEEE Transactions on Instrumentation and Measurement, 1. https://doi.org/10.1109/tim.2024.3406806
  20. WHO: Cardiovascular diseases (CVDs)
  21. Kazi, S et al. History Taking, Assessment, and Diagnosis of Patients with Cardiovascular Diseases-Re-defining the Clinical Skills. International Journal of Endorsing Health Science Research. 2022. 10(4): 422–432. https://doi.org/10.29052/IJEHSR.v10.i4.2022.422-432
  22. Bakshi, I. (2024). From Detection to Therapy: The Transformative Power of Radiology in Oncology. International Journal For Multidisciplinary Research, 6(4). https://doi.org/10.36948/ijfmr.2024.v06i04.24949
  23. Graafen D et al. Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution
    Photon-Counting Detector CT of the Lungs. Diagnostics. 2023; 13(23):3522. https://doi.org/10.3390/diagnostics13233522
  24. Seners P, Wouters A, Maïer B, et al. Role of Brain Imaging in the Prediction of Intracerebral Hemorrhage Following Endovascular Therapy for Acute Stroke. Stroke. Published online June 19, 2023
  25. Hildebrand T, Ma Q, Heyward CA, Haugen HJ, Nogueira LP. Advanced soft tissue visualization in conjunction with bone structures using contrast-enhanced micro-CT. Published online October 17, 2024. doi:10.1117/12.3027063
  26. Lee SK, Joo MW, Kim JY, Bernthal NM. Postoperative Imaging of Bone and Soft Tissue Tumors in the Extremity: A Comprehensive Review. Diagnostics. 2024;14(24):2794. doi:10.3390/diagnostics14242794
  27. Vittorio Di Trapani, Francesco Brun. Pre- and post-reconstruction digital image processing solutions for computed tomography with spectral photon counting detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021. 1010. https://doi.org/10.1016/j.nima.2021.165510.
  28. McCollough, C.H., Rajendran, K., Leng, S. et al. The technical development of photon-counting detector CT. Eur Radiol 33, 5321–5330 (2023). https://doi.org/10.1007/s00330-023-09545-9
  29. Yamaguchi I, Morimoto A. Influence of rotation speed of X-ray computed tomography on image quality. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2004 Jan;60(1):79-86. Japanese. doi: 10.6009/jjrt.kj00000922261. PMID: 15041910.
  30. Khan AA, Labbe JC. Advanced ceramic matrix composites for high energy x-ray generation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 045015 (8pp).

 

阅读更多简要阅读

You are about to visit a Philips global content page

Continue

最好通过最新版的 Microsoft Edge、Google Chrome 或 Firefox 查看我们的网站。